KELP

The term kelp refers to marine algae belonging to the order Laminariales.

Though not considered a taxonomically diverse order, kelps are highly diverse structurally and functionally. The most widely recognized species are the giant kelps (Macrocystis spp.), although numerous other genera such as Laminaria, Ecklonia, Lessonia, Alaria, and Eisenia are described.

A wide range of sea life uses kelp forests for protection or food, including fish, particularly rockfish, and many invertebrates, such as amphipods, shrimp, marine snails, bristle worms, and brittle stars. Many marine mammals and birds are also found, including seals, sea lions, whales, sea otters, gulls, terns, snowy egrets, great blue herons, and cormorants.

In algae (kingdom Protista), the body of an individual organism is known as a thallus rather than as a plant (kingdom Plantae). The morphological structure of a kelp thallus is defined by three basic structural units:

The holdfast is a root-like mass that anchors the thallus to the sea floor, though unlike true roots it is not responsible for absorbing and delivering nutrients to the rest of the thallus.

The stipe is analogous to a plant stalk, extending vertically from the holdfast and providing a support framework for other morphological features.

The fronds are leaf-like attachments extending from the stipe, sometimes along its full length, and are the sites of nutrient uptake and photosynthetic activity.

In addition, many kelp species have pneumatocysts, or gas-filled bladders, usually located at the base of fronds near the stipe. These structures provide the necessary buoyancy for kelp to maintain an upright position in the water column.

Kelp require a hard substrate, like rocks, to grow; as well as lots of light, and a high nutrient content in the water. In ideal conditions, giant kelp can grow as much as 30-60 cm vertically per day. Some species, such as Nereocystis, are annuals, while others such as Eisenia are perennials, living for more than 20 years.

Kelps are primarily associated with temperate and arctic waters worldwide. Of the more dominant genera, Laminaria is mainly associated with both sides of the Atlantic Ocean and the coasts of China and Japan; Ecklonia is found in Australia, New Zealand, and South Africa; and Macrocystis occurs throughout the northeastern and southeastern Pacific Ocean, Southern Ocean archipelagos, and in patches around Australia, New Zealand, and South Africa. The region with the greatest diversity of kelps is the northeastern Pacific, from north of San Francisco, California, to the Aleutian Islands, Alaska.

Although kelp forests are unknown in tropical surface waters, a few species of Laminaria have been known to occur exclusively in tropical deep waters. This general absence of kelp from the tropics is believed to be mostly due to insufficient nutrient levels associated with warm, oligotrophic waters. One recent study spatially overlaid the requisite physical parameters for kelp with mean oceanographic conditions has produced a model predicting the existence of subsurface kelps throughout the tropics worldwide to depths of 200 m. For a hotspot in the Galapagos Islands, the local model was improved with fine-scale data and tested; the research team found thriving kelp forests in all eight of their sampled sites, all of which had been predicted by the model. This suggests that their global model might actually be fairly accurate, and if so, kelp forests would be prolific in tropical subsurface waters worldwide. The importance of this contribution has been rapidly acknowledged within the scientific community and has prompted an entirely new trajectory of kelp forest research, particularly emphasizing the potential for a spatial refuge from climate change also the explanations to evolutionary patterns of kelps worldwide.